Computation of Balanced Equivalence Relations and Their Lattice for a Coupled Cell Network
نویسندگان
چکیده
A coupled cell network describes interacting (coupled) individual systems (cells). As in networks from real applications, coupled cell networks can represent inhomogeneous networks where different types of cells interact with each other in different ways, which can be represented graphically by different symbols, or abstractly by equivalence relations. Various synchronous behaviors, from full synchrony to partial synchrony, can be observed for a given network. Patterns of synchrony, which do not depend on specific dynamics of the network, but only on the network structure, are associated with a special type of partition of cells, termed balanced equivalence relations. Algorithms in Aldis [J. W. Aldis, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), pp. 407–427] and Belykh and Hasler [I. Belykh and M. Hasler, Chaos, 21 (2011), 016106] find the unique pattern of synchrony with the fewest clusters. In this paper, we compute the set of all possible patterns of synchrony and show their hierarchy structure as a complete lattice. We represent the network structure of a given coupled cell network by a symbolic adjacency matrix encoding the different coupling types. We show that balanced equivalence relations can be determined by a matrix computation on the adjacency matrix which forms a block structure for each balanced equivalence relation. This leads to a computer algorithm to search for all possible balanced equivalence relations. Our computer program outputs the balanced equivalence relations, quotient matrices, and a complete lattice for user specified coupled cell networks. Finding the balanced equivalence relations of any network of up to 15 nodes is tractable, but for larger networks this depends on the pattern of synchrony with the fewest clusters.
منابع مشابه
Manuela Aguiar , University of Porto The Patterns of Synchrony of a Coupled Cell Network
This is joint work with Ana Dias (University of Porto). A coupled cell network consists of a finite set of nodes (the cells) and a finite number of arrows. The cells represent the individual dynamics and the arrows the interactions between the individuals. An equivalence relation on the set of nodes can be defined symbolizing the following; two nodes are in the same cell equivalence class if th...
متن کاملFUZZY SUBGROUPS AND CERTAIN EQUIVALENCE RELATIONS
In this paper, we study an equivalence relation on the set of fuzzysubgroups of an arbitrary group G and give four equivalent conditions each ofwhich characterizes this relation. We demonstrate that with this equivalencerelation each equivalence class constitutes a lattice under the ordering of fuzzy setinclusion. Moreover, we study the behavior of these equivalence classes under theaction of a...
متن کاملPatterns of Synchrony in Coupled Cell Networks with Multiple Arrows
A coupled cell system is a network of dynamical systems, or “cells,” coupled together. The architecture of a coupled cell network is a graph that indicates how cells are coupled and which cells are equivalent. Stewart, Golubitsky, and Pivato presented a framework for coupled cell systems that permits a classification of robust synchrony in terms of network architecture. They also studied the ex...
متن کاملTwo-colour patterns of synchrony in lattice dynamical systems
Using the theory of coupled cell systems developed by Stewart, Golubitsky, Pivato and Török, we consider patterns of synchrony in four types of planar lattice dynamical systems: square lattice and hexagonal lattice differential equations with nearest neighbour coupling and with nearest and next nearest neighbour couplings. Patterns of synchrony are flow-invariant subspaces for all lattice dynam...
متن کاملRemarks on completeness of lattice-valued Cauchy spaces
We study different completeness definitions for two categories of lattice-valued Cauchy spaces and the relations between these definitions. We also show the equivalence of a so-called completion axiom and the existence of a completion.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Applied Dynamical Systems
دوره 12 شماره
صفحات -
تاریخ انتشار 2013